PREPARATION AND PROPERTY OF TWO AFFINITY MEMBRANES USED FOR ENDOTOXIN REMOVAL

Zhen Hua SHANG Wei GUO Yi Nian YU
(Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116012)
Dong Mei HAN
(Haerbin Pharmaceutical Factory, Haerbin 150086)
Wei Rong FENG
(Heilongjiang Provincial Institute for Drug Control, Haerbin 150001)

Affinity membrane having high specificity and selection used for purifying bioproducts from complex and dilute mixture has been quickly developed during last ten years[1-3]. A functional group named ligand is covalently bound to chemically modified membrane surface (both outer and inner surface in the pores). When a mixture feed solution containing named ligate molecules to be separated flows through the affinity membrane, the target compound (ligate) will be specifically and reversibly adsorbed on it to form a complex. In order to cleave the complex from the membrane, a salt solution containing a compound with greater than target molecule affinity with ligand passes through the membrane under pressure driving by pump, so that a solution containing free target compound can be obtained. According to this principle we have prepared several affinity membranes for use in bioproduct separations and purifications such as trypsin inhibitor[4], alkaline phosphatase[5], human serum albumin and α-interferon[6,7].

In recent years we also have developed two affinity membranes with histidine (His) and Polymyxin B (Pm B) as ligands used for endotoxin removal in some medicines and biomedical products. The affinity membranes based on cellulose and polyamide as raw materials have been prepared by following procedures: (1) crosslinking and chemical modification of the membrane's surface in order to improve mechanical and chemical properties by epoxy method; (2) spacing arms containing 2 or 6 carbon atoms are bond to the modified surface of the membranes; (3) ligands (His or Pm B) are coupled to the spacing arms.

The experimental results showed that the membranes have higher affinity adsorption capacity with endotoxin. Table 1 listed and compared their main physical and chemical characteristics.

* This research subject is supported by National Natural Sciences Foundation of China (NNSFC)